
BlackBerry Software
Development Kit
Version 2.5

Radio API Reference Guide (Mobitex)

BlackBerry Software Development Kit Version 2.5 Radio API Reference Guide
Last modified: 18 March 2002
Part number: PDF-04638-001

At the time of printing, this documentation complies with RIM Wireless Handheld Version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, �Always On, Always Connected�, the �envelope in motion� symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers. There are no warranties, express or implied,
with respect to the content of this document.

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Produced in Canada

Contents

About this guide.. 5
Other resources ..5

CHAPTER 1 Getting started .. 7
Understanding the Mobitex network ...7
Routing ..8

CHAPTER 2 Radio API reference... 9
Mobitex Radio API ..9

Structures ...9
Functions..14

Radio events ...22
Error codes..24

Index .. 25

About this guide

This guide provides a detailed reference for the Radio Application
Programming Interface (API).

The Radio API provides packet-level access to the Mobitex network
using function calls to send and receive data. You do not need
extensive knowledge of the network to use these functions.

This guide assumes you have experience with C++ programming.

Other resources
Before using this guide, you should be familiar with the following
documentation. These other resources can help you develop C++
applications for the BlackBerry Wireless Handheld.

All RIM documentation is available at http://developers.rim.net.

� BlackBerry SDK Developer Guide

This guide explains how to use the BlackBerry SDK and contains
sample code for the wireless handheld�s general functions.

� BlackBerry SDK Message API Reference Guide

The Radio API provides packet-level access to the radio network.
If your application needs to send messages, such as email or fax,
use the Messaging API.

� README.txt

The README.txt file is installed with the BlackBerry Software
Developer Kit (SDK). It provides information on any known
issues and workarounds, as well as last-minute documentation
updates and release notes.

About this guide

6 BlackBerry Software Developer Kit

Chapter 1
Getting started

This chapter provides an overview of radio communications over the
Mobitex network, including these topics:

� overview of the Mobitex network

� how data is routed in the network

Understanding the Mobitex network
Mobitex is a packet-switched, narrowband personal communications
service (PCS) network designed for wide-area wireless data
communications. Mobitex networks are operated by service
providers such as Cingular Interactive in the United States, Rogers
AT&T in Canada, and other companies in Asia, Australia, Europe,
and South America.

Wireless applications typically send short amounts of data in bursts,
with fairly long delays between each transmission. Packet switching
uses limited radio frequency resources efficiently by enabling
multiple users to share channels.

Mobitex provides highly reliable, 2-way digital data transmission.
The network provides error detection and correction, including
transmission acknowledgement, to maintain the integrity of the data
being sent.

Packet-switching technology provides flexibility and efficiency for
wireless data transmission, especially when the application involves
messaging, dispatching, remote queries, or other situations in which
only small amounts of data are transferred.

Note: This chapter provides background information on radio
communications on the Mobitex network. This information is not intended
to be comprehensive. Contact your network operator for complete
documentation on network operation.

Chapter 1: Getting started

8 BlackBerry Software Developer Kit

Routing
Each device on the Mobitex network is assigned a unique, 24-bit Mobitex access
number (MAN).

Data is routed through the network from sender to receiver in the form of Mobitex
packets (MPAKs). When sending MPAKs, you can have the Radio API automatically
format the MPAK and send it. The application fills in the appropriate elements in the
HEADER structure and then calls the RadioSendMpak function.

MPAKs are typically assembled and formatted by the operating system. Applications
fill in elements of the header structure, and then call RadioSendMpak() to submit this
structure, with the data, to the operating system for assembly into an MPAK. Refer to
"Structures" on page 9 for more information on the MPAK_HEADER structure.

Alternatively, applications can assemble and format raw MPAKs.

The Radio API supports the following MPAK types: TEXT, DATA, STATUS, and HPDATA.
In addition, the Radio API does not support MPAKs with address lists to send to
multiple destinations.

If another MPAK type is required, the application must assemble and format a raw
MPAK.

An MPAK structure contains the following information:

� 24-bit sender MAN

� 24-bit addressee MAN

� 24-bit time stamp of one-minute intervals

� 2 bytes of type information

� up to 512 bytes of payload data

If it is necessary to send more than 512 bytes of data, the application must divide the
data into two or more MPAKs.

Note: At the data link layer between the handheld and the network base station, each MPAK is
divided into smaller units of data, called radio-oriented synchronous information (ROSI) blocks.
Contact your network operator for more information.

Chapter 2
Radio API reference

This chapter provides information on Radio API structures,
functions, and error codes.

Mobitex Radio API
The Radio API provides access to the radio network using simple API
function calls to send and receive data. You do not need extensive
knowledge of the radio network to use these function calls.

Radio events are announced to applications through the message
system and provide information on the status of incoming and
outgoing packet communications. Refer to "Radio events" on page 22
for more information.

Structures
The Radio API uses the following structures.

MPAK_HEADER ... 10
RADIO_INFO ... 11
SKIPNUM_INFO .. 12
NETWORKS_INFO .. 13

Chapter 2: Radio API reference

10 BlackBerry Software Developer Kit

MPAK_HEADER

This structure represents the header data in an Mobitex packet (MPAK).

typedef struct {
 long Sender;
 long Destination;
 int MpakType;
 int HPID;
 int Flags;
 TIME Timestamp;
 long lTime;
 int TrafficState;
} MPAK_HEADER;

Field Description

Sender The Sender field specifies the source MAN, which identifies the originator
of the MPAK. The MAN is specified in most significant bit (MSB) to least
significant bit (LSB) format.
This field is filled in automatically when sending MPAKs.
This field tells the network where to send a failure status or positive
acknowledgment.
If the MPAK is returned to the sender, the source and destination MANs do
not change. The returned MPAK is an exact duplicate of the original MPAK
that was sent, with the exception of the traffic state bits indicating its
failed status.

Destination The Destination field specifies the destination MAN, which identifies the
intended recipient of the MPAK. The MAN is specified in MSB to LSB
format.
To send an MPAK, your application must know the MAN of the destination
device. When replying to a message, applications can use the source MAN
from the header of the received MPAK to send a reply.
The RadioSendMPAK function can contain a pointer to an MPAK_HEADER
structure, in which header.DESTINATION contains a DWORD indicating
the destination MAN.
If the MPAK is returned to the sender, the source and destination MANs do
not change. The returned MPAK is an exact duplicate of the original MPAK
that was sent, with the exception of the traffic state bits indicating its
failed status.

MpakType The MpakType field specifies the type of MPAK. This can be one of the
following:
MPAK_TEXT
MPAK_DATA
MPAK_STATUS
MPAK_HPDATA
For all other MPAK types, this value is set to 0.

HPID The HPID field specifies the HPID value for HPDATA MPAK types

Mobitex Radio API

Radio API Reference Guide (Mobitex) 11

RADIO_INFO

This structure stores general information about the state of the radio.

typedef struct {
 int RadioOn;
 DWORD LocalMAN;
 DWORD ESN;
 int Base;
 int Area;
 int RSSI;
 WORD NetworkID;
 DWORD FaultBits;
 BOOL Active;
 BOOL PowerSaveMode;
 BOOL LiveState;
 BOOL TransmitterEnabled;
} RADIO_INFO;

Flags The Flags field specifies one or both of the following values:
� FLAG_MAILBOX: If the destination is not reachable, the network stores

the MPAK in a mailbox and returns a copy to the sender with the
TrafficState field state set to TS_MESSAGE_IN_MAILBOX.

� FLAG_POSACK: The network sends a copy of the original MPAK to the
sender after it has been delivered.

Timestamp The Timestamp field specifies the parsed Mobitex time stamp for a
received MPAK.
The Radio API sets the timestamp to 0x000000 when sending an MPAK;
the time stamp is set by the network when it receives the packet.

lTime The lTime field specifies the raw MPAK Mobitex timestamp, in minutes
since January 1, 1985.

TrafficState The TrafficState field specifies the MPAK traffic state. This can be one
of the following:
� TS_MESSAGE_OK
� TS_MESSAGE_FROM_MAILBOX
� TS_MESSAGE_IN_MAILBOX
� TS_CANNOT_BE_REACHED
� TS_ILLEGAL_MESSAGE
� TS_NETWORK_CONGESTED
� TS_TECHNICAL_ERROR
� TS_DESTINATION_BUSY
This field must be set to TS_MESSAGE_OK when sending an MPAK.

Field Description

Chapter 2: Radio API reference

12 BlackBerry Software Developer Kit

SKIPNUM_INFO

This structure is used to query the radio about R14N skipnum settings.

typedef struct {
 BYTE SkipNum;
 BYTE ProtocolRevision;
 BYTE SkipTrans;
 BYTE Mode;
} SKIPNUM_INFO;

Field Description

RadioOn One of RADIO_ON or RADIO_OFF

LocalMAN The handheld’s MAN number, as a 32-bit value

ESN The electronic serial number, as a 32-bit value

Base, Area Current base and Area ID where the handheld is located or where
the handheld was last in network coverage; the Base and Area
together uniquely identify a base station in the Mobitex network

RSSI RSSI value in the range of –113 to –40, or RSSI_NO_COVERAGE;
values above –90 are generally reliable network coverage

NetworkID Network ID of the network on which the handheld is located; this
value is 0xB433 in the US

FaultBits Flags indicating various problems with the handheld

Active Network flow control flag that indicates whether the handheld is
receiving messages. The handheld can send an ACTIVE or INACTIVE
MPAKs to the network.
1 = “flow on” state; network will forward packets
0 = “flow off” state; network will not forward packets
Applications should not send INACTIVE or ACTIVE packets directly
to the network; instead, they should call RadioStopReception()
and RadioResumeReception().

PowerSaveMode Status of the low-power mode; always 1 on the handheld:
1 = powersave mode
0 = express

LiveState Status of the live state mode:
1 = LIVE state, 0 = DIE state

TransmitterEnabled Status of the transmitter mode:
1 = Tx enabled, 0 = Tx disabled

Mobitex Radio API

Radio API Reference Guide (Mobitex) 13

NETWORKS_INFO

This structure is used to query the radio for supported network IDs.

typedef struct {
 int DefaultNetworkIndex;
 int CurrentNetworkIndex;
 int NumValidNetworks;
 struct {

WORD NetworkId;
BYTE NetworkName[10];

 } Networks[10];
} NETWORKS_INFO;

Field Description

SkipNum Current Skipnum value used by the handheld

ProtocolRevision Mobitex protocol revision (0 for pre-R14N)

SkipTrans SkipTrans value of the Mobitex network

Mode Status of the low-power mode:
1 = low-power mode, 0 = express mode

Field Description

DefaultNetworkIndex Default network

CurrentNetworkIndex Current network

NumValidNetworks Number of valid networks

NetworkId Network frame synchronization word (0xB433 in the US)
Part of the Networks substructure in NETWORKS_INFO

NetworkName[10] Name of the network
Part of the Networks substructure in NETWORKS_INFO

Chapter 2: Radio API reference

14 BlackBerry Software Developer Kit

Functions
The following functions are listed alphabetically.

RadioAccelerateRetries ... 14
RadioCancelSendMpak ... 14
RadioChangeNetworks ... 15
RadioDeregister .. 15
RadioGetAvailableNetworks ... 15
RadioGetDetailedInfo .. 16
RadioGetMpak .. 16
RadioGetSignalLevel ... 17
RadioOnOff ... 18
RadioRegister .. 18
RadioRequestSkipnum .. 19
RadioResumeReception .. 20
RadioSendMpak ... 20
RadioStopReception ... 21

RadioAccelerateRetries

Causes the radio to retry transmitting more aggressively.

void RadioAccelerateRetries(int mpakTag)

Description When the radio has difficulty transmitting an MPAK to the base station due to
network congestion or poor network coverage, it normally increases the interval
between transmission retries to allow conditions to improve.
RadioAccelerateRetries causes the radio to retry sending the MPAK in the handheld
more aggressively. This decreases battery life in exchange for stronger attempts to
send the MPAK. RadioAccelerateRetries should normally only be called based on
user action that indicates that the user is waiting for a packet to be sent (such as the
user selecting Resend for data that has already been submitted by an application).

RadioCancelSendMpak

Cancels a submitted MPAK.

int RadioCancelSendMpak(int mpakTag)

Parameters mpakTag Tag of the MPAK for which the radio should accelerate
transmission (not currently used).

Parameters mpakTag This parameter is the tag assigned by the application server
when the packet is submitted to the handheld for
transmission. A value of -1 cancels all MPAKs that are
queued for transmission by the calling application.

Mobitex Radio API

Radio API Reference Guide (Mobitex) 15

Returns This function returns the number of MPAKs that were cancelled. It returns a negative
value if an error occurs.

Description This function attempts to cancel a submitted packet that is identified by the tag
number. If this function is called before the MPAK is transmitted, the MPAK is
returned to the application as cancelled, provided that it has not already been sent.
There is no guarantee, however, that a cancelled MPAK was not already received by
the Mobitex network.

RadioChangeNetworks

Changes the current radio network (Rogers AT&T in Canada, Cingular Interactive in
the United States).

void RadioChangeNetworks(DWORD NetworkId, BYTE * NetworkName)

Returns No return value.

Description This function changes the current network to the specified network. This could be
necessary if the application requires access to networks in both Canada and the
United States.

RadioDeregister

Deregisters applications from receiving radio events.

void RadioDeregister(void)

Returns No return value.

Description This function deregisters the current application so that it no longer receives RADIO
events. Any MPAKs that the deregistering application has pending for transmission
are cancelled and returned to the application. Therefore, it is still possible for the
application to receive some radio events after de-registering.

RadioGetAvailableNetworks

Programs the available networks into the handheld.

void RadioGetAvailableNetworks(NETWORKS_INFO * info)

Parameters NetworkId The new network�s ID number.

NetworkName Name of the network to which the current network is
being changed.

Parameters info Pointer to a NETWORKS_INFO structure (refer to �Structures� on
page 9).

Chapter 2: Radio API reference

16 BlackBerry Software Developer Kit

Returns No return value.

Description Enables you to query the handheld and determine which networks have been
programmed.

RadioGetDetailedInfo

Retrieves the current state of the radio.

void RadioGetDetailedInfo(RADIO_INFO * info)

Returns No return value.

Description Retrieves the current state of the radio, such as MAN number, RSSI, on/off,
powersave/express, base, and area, into a RADIO_INFO structure (refer to �Structures�
on page 9 for details)

RadioGetMpak

Retrieves the data of a received MPAK

int RadioGetMpak(int mpakTag,
MPAK_HEADER * header,
BYTE * data)

Returns If header is not NULL, the number of data bytes in the data portion of the MPAK
(0 to 512) is returned if successful. If header is NULL, the length of the entire MPAK is
returned.

The function has a return value of -1 if it is unsuccessful.

Parameters mpakTag This parameter is the MPAK_TAG value from the MESSAGE_RECEIVED
message. The MPAK_TAG value has a limited life span. For received
MPAKs, the tag must be used before getting the next message or
yielding control.

header This parameter is a pointer to an MPAK_HEADER structure (refer to
�Structures� on page 9 for details). The information extracted from
the MPAK header is placed in this structure.
If this pointer is NULL, no header is extracted, and the raw MPAK is
placed in the buffer.

data This parameter is a pointer to a buffer large enough to contain the
MPAK. The amount of space required can be determined by calling
RadioGetMpak. It is recommended that this parameter always point
to a buffer of at least 512 bytes. If the header pointer is NULL, the raw
MPAK is placed in the buffer. In this case, the buffer should be at
least 560 bytes.
If the data pointer is NULL, the MPAK is not copied.

Mobitex Radio API

Radio API Reference Guide (Mobitex) 17

Description When an MPAK is received, the MPAK_TAG value is contained in the message. This tag
value is used to obtain subsequent information about the MPAK.

This function can also be used to get copies of MPAKs that are queued for
transmission. MPAKs that are queued for transmission can be recalled at any time
until RimTaskYield or RimGetMessage are called.

RadioGetMpak can be used in several ways:

� You can obtain only the header, by setting the data pointer to NULL.

� You can obtain both the header and the MPAK. Both pointers point to their
respective data areas. Only the data portion of the MPAK is copied into the data
buffer.

� You can obtain the raw MPAK. The header pointer is set to NULL, while the data
pointer points to a buffer for the raw MPAK. The entire MPAK, including header
information, is copied into the data buffer.

The MPAK is only guaranteed to be available until the application yields control to
the system (via RimGetMessage or RimYield). The MPAK remains available until all
applications that have registered to receive MPAKs have received the
RADIO_MESSAGE_RECIEVED message. After all registered applications have received this
message, the MPAK is released the next time that control is yielded to the system
(through RimGetMessage or RimTaskYield).

RadioGetSignalLevel

Gets the current signal strength.

int RadioGetSignalLevel()

Returns Radio signal level in dBm, if the handheld is in an area of wireless network coverage;
the value is typically between -121 dBm and -40 dBm.

If the handheld is out of network coverage, the return value is -256
(RSSI_NO_COVERAGE) or less.

Description The return value is always negative. A higher number (closer to 0) indicates greater
strength of the received signal. For example, �90 dBm. indicates greater coverage than
-93 dBm.

Example // Displays the strength of the received radio signal
int level = RadioGetSignalLevel();

if (level > RSSI_NO_COVERAGE){
sprintf(buffer, “Level = %d dBm”, level);

} else {
sprintf(buffer, “No coverage”);

}

Chapter 2: Radio API reference

18 BlackBerry Software Developer Kit

RadioOnOff

Checks/changes radio status (on/off).

int RadioOnOff(int mode)

Returns The function returns the state of the radio before RadioOnOff was called, and can be
one of the following values:

Description This function enables the applications to check and modify the on/off state of the
radio. The radio must be explicitly turned on if applications want to use it, as its
default state is off if any applications are loaded.

RadioRegister

Registers applications for radio events.

void RadioRegister()

Returns No return value.

Description Applications must call this function to receive notification of RADIO events (including
received MPAKs). Applications that have not registered for radio events cannot send
or receive MPAKs. After calling RadioRegister, the application receives a
SIGNAL_LEVEL message if the radio is on or receives a RADIO_TURNED_OFF message if
the radio is off.

Parameters mode Specifies the new state of the radio; the mode parameter can be one of the
following values:
radio_on � turns on the radio
radio_off � turns off the radio
radio_get_onoff � returns the current state

radio_on The radio is on.

radio_off The radio is off, or turning off.

radio_lowbatt The radio is on, but the battery is too low for it to be operational.

Note: Refer to RadioGetDetailedInfo to check other details of the radio’s state.

Mobitex Radio API

Radio API Reference Guide (Mobitex) 19

RadioRequestSkipnum

Sets and requests the skipnum parameters used in R14N networks

int RadioRequestSkipnum(SKIPNUM_INFO * SkipInfo,
int Skipnum)

Returns This function returns the value of Skipnum that was used before RadioRequestSkipnum
was called. It returns negative if an error occurs.

Description This function is used to set and request the surface velocity profilers (SVP) skip
parameters used in networks that support the R14N level of firmware or higher, such
as the Cingular Interactive network in the United States.

The skipnum value determines how many 10-second intervals the handheld waits
before turning on to see if the network has traffic to address to it. Thus, an additional
delay of up to 10 times the value of skipnum can be introduced on unsolicited traffic
from the base station. Skipnum does not affect the timing of traffic going into the
network.

When the skipnum value changes, the handheld transmits to the network which
skipnum interval is used. A skipnum value of 1 provides the fastest delivery of
unsolicited traffic from the network, while larger values of skipnum save battery
power because the receiver is not turned on as often. Skipnum values of 1, 2, or 4 are
recommended, and 4 is the default. The gain in battery life of settings greater than 4 is
small, so values above 4 are not recommended.

Refer to Ericsson's documentation on R14N for more details on skipnum and how it
affects various aspects of the Mobitex protocol.

Parameters SkipInfo This parameter is a pointer to a SKIPNUM_INFO structure (refer to
�Structures� on page 9 for details). This structure is filled with the
current parameters of the R14N skipping algorithm. These
parameters reflect the value of Skipnum that was used at the time
that RadioRequestSkipnum was called.
If Info is a NULL pointer, the structure will not be filled in.

Skipnum This parameter represents the new value of Skipnum to use. Legal
values are 1, 2, 4, 8, and 16. A value of 0 indicates an information
request without a change request.

Chapter 2: Radio API reference

20 BlackBerry Software Developer Kit

RadioResumeReception

Indicates that the application is ready to receive MPAKs again.

void RadioResumeReception()

Returns No return value.

Description This function is used to indicate that the application is ready to receive MPAKs again
after RadioStopReception is called. If RadioStopReception is used to save an MPAK,
the MPAKis again received with a MESSAGE_RECEIVED message, as if it had just been
received by the radio.

This function must be called by the same task or thread that calls
RadioStopReception. Each task that calls RadioStopReception must call this function
before more MPAKs can be received.

RadioSendMpak

Submits an MPAK for transmission by the radio.

int RadioSendMpak(MPAK_HEADER * header,
BYTE * data,
int length)

Returns A tag is assigned to the MPAK by the application server. If the sequence identification
is negative, the message cannot be queued for sending. The returned tag value is
always less than MAX_QUEUED_MPAKS, which is currently defined as 7.

Parameters header This parameter is a pointer to an MPAK_HEADER structure (refer to
�Structures� on page 9 for details). This structure contains information
for building the MPAK header, including the type of MPAK and the
addressee. If the application wants to build the MPAK and header
itself, the header parameter is set to NULL, and no header is added to
the MPAK.
The Sender field of the header is always filled by the application server
to the handheld�s MAN, and does not need to be set by the application.

data This parameter is a pointer to a buffer that contains the data bytes that
are to be included in the MPAK.

Mobitex Radio API

Radio API Reference Guide (Mobitex) 21

Description RadioSendMpak submits an MPAK for transmission by the radio. If an MPAK has
already been submitted for transmission by this or any other application, the MPAK is
queued. If more than four MPAKs are already queued, RadioSendMpak fails and
returns a negative error code.

RadioSendMpak copies the data that is provided. The data that is pointed to when the
call is made can be deleted after the call returns.

Example // Send an Hpdata 123 MPAK with data “Hello” to MAN
// 123456. Send a Status 10 MPAK to MAN 123456.
{

MPAK_HEADER header;
int temp;

header.Destination = 123456;
header.MpakType = MPAK_HPDATA;
header.Flags = FLAG_POSACK;
header.TrafficState = TS_MESSAGE_OK;
header.HPID = 123;

tag1 = RadioSendMpak(header, “Hello”, 5);
// Send a status MPAK. Header is mostly set up
// already.
header.MpakType = MPAK_STATUS;
temp = 10;
tag2 = RadioSendMpak(header, &temp, 1);

}

RadioStopReception

Indicates that the radio is not ready to receive MPAKs.

void RadioStopReception(int mpakTag)

Description The RadioStopReception function stops the handheld from receiving MPAKs. It is
intended for use when all buffers for receiving MPAKs are full. This function should
be used only if no more memory can be allocated to save received data.
RadioStopReception causes the radio to eventually stop receiving MPAKs for all
applications running on the handheld.

Further MPAKs can still be received after RadioStopReception is called, as they might
already be in the calling task�s message queue. These MPAKs can still be saved by
calling RadioStopReception again.

Parameters mpakTag If RadioStopReception is called in response to a
MESSAGE_RECEIVED message, the mpakTag value can be passed
into the function as a parameter. After
RadioResumeReception is called, the saved MPAK is resent to
the calling application.

Chapter 2: Radio API reference

22 BlackBerry Software Developer Kit

Radio events
When any of the following events occur, the Device member of the MESSAGE
structure is equal to DEVICE_RADIO.

Event Description

MESSAGE_RECEIVED This event is sent to all applications that have registered to receive
radio events (RadioRegister). This event indicates that a data
packet was received from the Mobitex network.
The SubMsg field contains a tag value to be passed into
RadioGetMpak. Data[0] contains the type of the MPAK
received, and Data[1] contains the HPID (if the MPAK is of type
hpdata). Applications should call RadioGetMpak to receive the
message data.

MESSAGE_SENT This event is an acknowledgement that a transmitted packet was
received by the Mobitex network. This event is sent to the
application that sent the packet, whether that application is in the
foreground or the background. The SubMsg field contains the tag
value that was returned by RadioGetMpak.

MESSAGE_NOT_SENT This event indicates that an attempt to transmit information to the
Mobitex network failed. This event is sent to the task that
submitted the packet when coverage is too poor for transmission
or when an invalid data package is sent. The SubMsg field contains
the tag value returned by RadioGetMpak. The Data[0] contains
the error number.

SIGNAL_LEVEL This event is sent to all registered applications to indicate that the
received signal level has changed. The SubMsg field contains a
negative value that represents the level of the signal in dBm. A
more positive value (closer to zero) indicates a stronger signal. A
value of -256 dBm (RSSI_NO_COVERAGE) indicates that the
modem is out of coverage.

NETWORK_STARTED This event is sent to all registered applications to indicate that the
radio modem has been turned on or has just switched to a new
network.

Radio events

Radio API Reference Guide (Mobitex) 23

BASE_STATION_CHANGE This event is sent when the handheld switches base stations.
It has no other effect and requires no action on the part of the
application.

RADIO_TURNED_OFF This event is sent to all registered applications to indicate that the
radio modem has been turned off, either by the user or as a result
of a low battery.

MESSAGE_STATUS An MPAK sent to the Radio API might not be transmitted
immediately. The sender of an MPAK is notified of that MPAK
transmission status through this event. The Data[0] field of the
message structure contains one of the following status subcodes:
� MPAK_TRANSMITTING : MPAK is being sent by the radio

� MPAK_TX_PENDING: The radio is not transmitting the MPAK
because of transmission difficulties; it will try again later

Event Description

Chapter 2: Radio API reference

24 BlackBerry Software Developer Kit

Error codes
The following error codes pertain to radio function return values.

Code Description Description

-1 RADIO_APP_NOT_REGISTERED Applications must be registered for radio events
to be allowed to send MPAKs. Attempting to send
MPAKs without being radio- registered returns
this error code.

-2 RADIO_MPAK_NOT_FOUND Attempting to fetch an MPAK with a tag value
that has expired produces this error code. MPAKs
must be fetched before the task yields control to
other tasks.

-3 RADIO_NO_FREE_BUFFERS Attempting to send an MPAK with all the radio's
outgoing buffers full produces this error code.

-4 RADIO_BAD_DATA Attempting to send an MPAK with format data
that cannot be used in an MPAK produces this
error code.

-5 RADIO_BAD_TAG Attempting to fetch an MPAK with a tag value
outside the legal range produces this error code.

-6 RADIO_ERROR_GENERAL This is a generic radio error.

-7 RADIO_ILLEGAL_SKIPNUM Attempting to set the Skipnum value with
RimRequestSkipnum to any value other than 1,
2, 4, 8, or 16 produces this error.

-8 RADIO_ILLEGAL_WSM_PACKET Not implemented.

Radio API Reference Guide (Mobitex) 25

Index
Functions
RadioCancelSendMpak, 14
RadioChangeNetworks, 15
RadioDeregister, 15
RadioGetAvailableNetworks, 15
RadioGetDetailedInfo, 15, 16
RadioGetMpak, 16
RadioGetSignalLevel, 17
RadioOnOff, 18
RadioRegister, 18
RadioRequestSkipnum, 19
RadioResumeReception, 20
RadioSendMpak, 20
RadioStopReception, 21

A
applications

deregister, 15

B
battery power

low batteries, 23

C
cancelling a submitted packet, 14

M
MAN

description, 8
MESSAGE_NOT_SENT event, 22
MESSAGE_RECEIVED event, 22
MESSAGE_SENT event, 22

Mobitex network
description, 7
MAN, 8

modem
out of network coverage, 22

N
NETWORK_STARTED event, 22

P
packets

cancelling submitted, 14

R
radio

registering for events, 18
state, 15, 18

RADIO_TURNED_OFF event, 23
receiving packets

event, 22
function, 16
resume, 20
stopping, 21

related documentation, 5

S
SDK

components, 5
sending packets

cancelling, 14
events, 22

Sequence ID, 14, 16, 20
signal strength, 17, 22
SIGNAL_LEVEL event, 22
SubMsg field, 22

Index

26 BlackBerry Software Developer Kit

© 2002 Research In Motion Limited
Produced in Canada

	About this guide
	Other resources

	Getting started
	Understanding the Mobitex network
	Routing

	Radio API reference
	Mobitex Radio API
	Structures
	Functions

	Radio events
	Error codes

	Index

